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High-Resolution Genuinely Multidimensional Solution of
Conservation Laws by the Space-Time Conservation Element and
Solution Element Method

Ananda Himansu*
Ching-Yuen Lohf

Abstract

In this overview paper, we review the basic princi-
ples of the method of space-time conservation ele-
ment and solution element for solving the conser-
vation laws in one and two spatial dimensions. The
present method is developed on the basis of local and
global flux conservation in a space-time domain, in
which space and time are treated in a unified man-
ner. In contrast to the modern upwind schemes,
the approach here does not use the Riemann solver
and the reconstruction procedure as the building
blocks. The drawbacks of the upwind approach,
such as the difficulty of rationally extending the 1D
scalar approach to systems of equations and par-
ticularly to multiple dimensions is here contrasted
with the uniformity and ease of generalization of the
CE/SE 1D scalar schemes to systems of equations
and to multiple spatial dimensions. The assured
compatibility with the simplest type of unstruc-
tured meshes, and the uniquely simple nonreflecting
boundary conditions of the present method are also
discussed. The present approach has yielded high-
resolution shocks, rarefaction waves, acoustic waves,
vortices, ZND detonation waves and shock/acoustic
waves/vortices interactions. Moreover, since no di-
rectional splitting is employed, numerical resolution
of two-dimensional calculations is comparable to
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that of the one-dimensional calculations. Some sam-
ple applications displaying the strengths and broad
applicability of the CE/SE method are reviewed.

1 Introduction

This paper provides an introductory overview of a
new numerical framework for solving conservation
laws, namely, the Method of Space-Time Conserva-
tion Element and Solution Element, or the CE/SE
method for short. The method has been developed
in the past few years by Chang and coworkers [1-
31]. This method was designed from scratch to be a
coherent framework, and is not an incremental im-
provement of a previously existing method. All the
numerical schemes obtained by application of this
method share the attributes of generality, accuracy
and simplicity. The method has been applied by
Chang and coworkers to obtain numerical schemes
for conservation laws in fluid dynamics. However,
the method could also be applied to other contin-
uum conservation laws, such as those encountered
in electromagnetics.

The CE/SE method is distinguished from other
methods by its very conceptual basis — flux conser-
vation in space-time. The original reports described
the present method in a thorough and highly de-
tailed fashion. That is, starting from the basic inte-
gral equations, the algebraic details of the discretiza-
tion and the stability and error analyses were pre-
sented in a systematic way. One of the aims of this
overview is to provide the reader unfamiliar with the
CE/SE method with a gentler introduction to the
method. In this overview, following the treatment of



[11], the CE/SE method is described in a more intu-
itive manner by focusing on the geometric nature of
its unique space-time discretization. This will give
the reader a complete and simple conceptual descrip-
tion of CE/SE algorithms in one and more spatial
dimensions. For algebraic details of the schemes and
numerical analysis of their properties, the reader is
referred to the original papers. The geometric de-
scription clarifies the conceptual and algorithmic dif-
ferences between the CE/SE method and traditional
numerical methods for conservation laws. This high-
lighting of these differences is another aim of the
current paper. The third aim of this paper is to re-
view some sample numerical results obtained with
CE/SE schemes, in order to give the reader some
indication of the accuracy and broad applicability
demonstrated already by the method. A fourth aim
is to provide the reader with a CE/SE bibliography,
complete as of July 1998.

To persuade the reader of the advantages of the
CE/SE approach, the key features and principal suc-
cesses of the method will now be briefly listed. The
statements will be supported by the exposition in
later sections of the paper. Some distinguishing fea-
tures of the CE/SE method are : (i) Although the
differential form is also utilized, the main empha-
sis of the present method is on solving the inte-
gral form of the conservation equations in the space-
time domain. (ii) The conservation laws are recog-
nized as balances of space-time fluxes exiting space-
time regions. The present method was therefore de-
signed to conserve space-time flux locally and glob-
ally. Conventional ‘conservative’ schemes, however,
calculate spatial fluxes at an instant of time; they do
not recognize the importance of conservative treat-
ment of the temporal evolution. The space-time
flux perspective allows for truly conservative treat-
ment of moving boundaries and moving meshes. (iii)
The discretized equations obtained by the present
method are a faithful discrete counterpart of the
conservation laws, automatically reproducing the
key properties of the latter, such as characteristics-
related properties. For example, for isentropic flows,
the present method can be used to construct explicit
solvers that are non-dissipative (neutrally stable) for
all Courant numbers <1. Also, these solvers are
two-way time-marching schemes, i.e., each forward-
time-marching scheme can be inverted to become a
backward-time-marching scheme, which is also neu-
trally stable. In other words, the marching variables
at the (n—1)th time level can be determined in terms
of those at the nth time level. Thus, these solvers
reproduce the time-reversibility displayed by isen-

tropic initial-value flow problems arising from pure
convection phenomena. (iv) A staggered space-time
mesh is used, i.e., the spatial arrangement of the
mesh nodes at any time level is spatially staggered
relative to the arrangement at the previous time
level. This ensures that flow information at each
interface separating two conservation elements can
be evaluated without interpolation (e.g., averaging)
or extrapolation. In particular, no Riemann solver
is needed in calculating interfacial fluxes. (v) The
flow solution structure is not calculated through a
reconstruction procedure. Instead, the gradients of
flow variables are treated as independent unknowns,
and they are not influenced by the flow properties in
neighboring elements at the same time level. This is
in full compliance with the flow physics of the initial-
value problem. (vi) For flows in multiple spatial di-
mensions, no directional splitting is employed. The
two and three-dimensional spatial meshes employed

- by the present method are built from triangles and

tetrahedrons, respectively. The CE/SE schemes in
two and three spatial dimensions are naturally for-
mulated on unstructured triangular and tetrahedral
meshes which are the most easily generated meshes
for complicated flow boundary geometries. (vii) The
explicit time-marching CE/SE algorithms for initial-
value and initial-boundary-value problems are easy
to vectorize and parallelize, in order to take ad-
vantage of advanced computer architectures. (viii)
The flux-based specification of the CE/SE schemes
give rise in a natural fashion to extremely simple
yet highly effective non-reflecting boundary condi-
tions. This is in contrast to the complexity of non-
reflecting boundary conditions necessary for tradi-
tional numerical methods.

Computer programs based on the CE/SE method
have been developed for calculating flows in one
and two spatial dimensions. Numerous results
were obtained [1-31], including various shock tube
problems, the ZND detonation waves, the implo-
sion and explosion problem, shocks over a forward-
facing step, acoustic waves, and shock/acoustic
wave interactions. The method can clearly resolve
shock/acoustic wave interactions wherein the differ-
ence of the magnitude between acoustic wave and
shock could be up to six orders. In two-dimensional
flows, the reflected shock is as crisp as the lead-
ing shock. From the evidence of these results, the
CE/SE method has proved to be a promising numer-
ical framework for solving fluid dynamics problems.

The remainder of the paper is organized as fol-
lows. In Sec. 2, we contrast the present perspective



of conservation of space-time fluxes with the tra-
ditional focus on conservation of spatial fluxes. A
new space-time integral form of conservation laws
will be described. In Sec. 3, we present the CE/SE
method for solving flow equations in one spatial di-
mension. In Secs. 4 and 5, the extensions of the
CE/SE method in two and three spatial dimensions,
without directional-splitting, are illustrated. In Sec.
6, numerical examples calculated by the present
method are shown. Sec. 7 has a summary and con-
cluding remarks.

2 Numerical Methods from
the Space-Time Perspective

2.1 Finite-Volume Conservative Dis-
cretization

The finite-volume method is the traditional numeri-
cal method that is conceptually closest to the present
method. Therefore, we begin this section with some
remarks regarding the basis and limitations of up-
wind finite volume discretizations. Historically, the
solution of conservation laws was first viewed as
being reducible to the solution of ordinary or par-
tial differential equations, with specified initial and
boundary conditions. As the development of nu-
merical methods for differential equations matured,
it was recognized that flux-conservative numerical
schemes were essential for the accurate computation
of flowfields with shocks and other embedded discon-
tinuities. This property of conservative differencing
was due to its mimicking of integral flux balances,
which are applicable to discontinuities. With the
early emphasis on steady state solutions, the conven-
tional finite volume methods for simulating conser-
vation laws were focused on spatial flux balance over
a fized spatial domain. Modern upwind techniques
that stem from Godunov’s scheme, and which fol-
low the projection-upwinding-evolution framework
described by van Leer [39, 40]. A particularly lu-
cid description of the modern upwind approach is
found in Huynh [41].

Consider conservation of any extensive property
with continuum distribution per unit volume u, and
spatial flux vector f. The differential form of the
conservation or transport law, which applies in the
absence of discontinuities of the solution and its gra-

dient, is
du

F=-V-F, (2.1)

where V is the spatial gradient operator. It is this
differential form that is numerically approximated
by finite-difference techniques. Integrating Eq. (2.1)
over a fixed spatial volume V, and using Gauss’ di-
vergence theorem to convert the volume integral on
the right-hand-side to a surface integral, we obtain

i udV = —

F.dS,
dt Jv S(v) f

(2.2)
where S(V) is the boundary of V, and dS = do 7
with do and 7, respectively, being the area and the
outward unit normal vector of a surface element on
S(V). Eq. (2.2) is the balance at a particular in-
stant of time between the spatial fluxes exiting a
finite spatial volume, and the time rate of change
of a quantity within the volume. The traditional
finite volume methods concentrate on the conserva-
tive evaluation of the right hand side of Eq. (2.2).
The left hand side of Eq. (2.2) is often discretized by
a finite difference method, such as the Runge Kutta
method. Thus, while the spatial fluxes are treated
in an integral sense, the flux of the solution in the
time direction is still treated in a differential man-
ner. This means that the balancing of fluxes occurs
only at discrete instants of time. The solution in be-
tween these instants will not in general display exact
balance of the numerical fluxes. This allows the nu-
merical solution to “leak away” as it evolves in time.
Thus energy and other quantities will generally not
be globally conserved in an evolving unsteady flow.

If we integrate Eq. (2.2) with respect to time, we
t2

obtain
ta - -
/udV =—/ dt f-ds.
v t1 i S(V)

Note that Eq. (2.3) is more fundamental than Eq.
(2.1), and applies even to discontinous solutions such
as shock waves and contact discontinuities. For
smooth solutions, Eq. (2.1) can be obtained from
Eq. (2.3) by application of Gauss’ divergence theo-
rem to arbitrary volumes. Eq. (2.3) is indeed an in-
tegral form of the flux balances, and it is the starting
point for some finite-volume discretizations. How-
ever, even this form has a drawback, namely, that
the spatial volume V is unchanging in time. This
fact, coupled with a spatial (rather than space-time)
perspective on flux conservation, means that in the
finite-volume context, Eq. (2.3) is generally applied
to a spatial mesh that is the same at successive time

(2.3)




levels. The same kind of mesh is used also when the
left-hand side of Eq. (2.2) is treated by Runge-Kutta
integration, or other such method. This awkward
space-time mesh arrangement evolved from the lim-
ited viewpoint of considering conservation of only
the spatial fluxes. As will be shown next, it leads
to the necessity of averaging fluxes at interfaces be-
tween cells, which is in turn the source of much com-
plexity and difficulty.

As shown in Fig. 2.1(a), due to the fixed spatial
domain assumed in Eq. (2.3), the shape of the space-
time Conservation Elements (CEs) in one spatial di-
mension must be rectangular. In addition, because
of the limited spatial perspective of the mesh in most
discretizations, these elements are generally stacked
exactly on top of each other in the time direction,
1.e., no staggering of these elements in time is used.
If Eq. (2.2) is used instead, the spatial CEs are Jjust
the horizontal line segments in Fig. 2.1(a). For equa-
tions in two spatial dimensions, as depicted in Fig.
2.1(b), a conservation element is a uniform-cross-
section cylinder in space-time, and again no stagger-
ing in time is employed. This arrangement results in
vertical interfaces extended in the direction of time
evolution between adjacent CEs. Across these inter-
faces, flow property information from the previous
time level travels in both directions. Therefore, in
calculating the interfacial flux which is needed to
balance fluxes for the CEs, two values of the interfa-
cial flux are obtained, one from each of the two CEs
which share the interface. To reconcile these two val-
ues and obtain a unique value of the interfacial flux,
some form of averaging becomes necessary. A sim-
ple arithmetic averaging of fluxes leads to a central-
difference approximation of the spatial derivatives.
In modern high-resolution schemes, to better model
the flow of information, the averaging is accom-
plished by upwind biasing (or a Riemann solver).
However, this upwind biasing, termed flux-splitting
for systems of equations, is based on the Method
of Characteristics, which is valid only for smooth
solutions and does not apply to solution discontinu-
ities such as shocks. Further, for flows in multiple
spatial dimensions, directional splitting is used to
implement one-dimensional characteristic flux split-
ting. This practice causes deterioration of numeri-
cal resolution and difficulties in solving conservation
laws with source terms, because source terms have
no preferred direction.

We mention here that besides the need for the
averaging of fluxes at interfaces, there are other
sources of complexity and difficulty in the conven-

tional finite-volume approach. One such source is
that typically the unknowns in the discretized solu-
tion are just the values of the solution at the mesh
points. At any mesh point, the numerical approxi-
mations to the flow gradients, which are needed for
higher accuracy, must be recovered using the dis-
cretized solution at the mesh point and the neighbor-
ing mesh points. This procedure is termed projec-
tion or reconstruction, and is normally accomplished
by fitting a polynomial to the solution at neighboring
mesh points. In the vicinity of shocks, however, this
results in spatial oscillations in the solution. This
problem is addressed through the use of complex
flux-limiting strategies, such as Total Variation Di-
minishing and Essentially Non-Oscillatory schemes,
etc., which use some non-general properties of sim-
ple shock waves.

Schemes that use a staggered space-time mesh, of
course, date back to such classical schemes as the
Leapfrog scheme, which latter scheme in actuality
computes two decoupled staggered-mesh solutions.
In general, they are not currently favored by the
CFD community. However, we point out that there
are some staggered space-time mesh schemes devel-
oped prior to the current work, which continue to
be researched. Sanders [47] and Sanders and Weiser
([48], [49]) developed a staggered mesh scheme.
However, they did not gain the potential benefit of
avoiding upwinding, because they used the method
of characteristics as part of their solution procedure.
Nessyahu and Tadmor [46] also developed a stag-
gered mesh scheme. However, they did not treat
the flow gradients as independent unknowns at the
mesh point, and were thus led to reconstructive pro-
cedures. Both the preceding schemes are dissipa-
tive and therefore irreversible. The present method
was developed independently in a different frame-
work by Chang and coworkers, without knowledge of
the schemes of Sanders and Weiser, or of Nessyahu
and Tadmor.

2.2 Space-Time Integral Form of the
Governing Equations

We now present the space-time integral form of the
governing equations that is the starting point for the
CE/SE method. For ease of exposition, we will deal
with the one-dimensional Euler equations. The one-
dimensional unsteady Euler equations of a perfect
gas can be expressed as

U, +F, =0, (24)



where

uy p

U=| u = |, (2.5)
u3 pE
fi pv

F=| £ | = pi+p |, (26)
f3 (PE +p)v

with p, v, p, and E being the density, velocity, static
pressure, and specific total energy, respectively. By
definition, £ = v2/2 + e, where e is the specific in-
ternal energy. The equation of state is p = (Y—=1)pe
with 7 being the specific heat ratio.

As shown in Fig. 2.2, let 2, = z, and T = 1
be the coordinates of a two-dimensional Euclidean
space E3. Then Eq. (2.4) can be expressed as the
divergence-free conditions

V 'i':m = 0:

m=1,2,3, (2.7)

where V here denotes the space-time gradient oper-
ator (0/0z,8/0t), and h,, = (fm um), m=1,2,3,
are the space-time mass, momentum, and energy
current-density vectors, respectively. Equation (2.7)
is valid everywhere in E, for continuous and isen-
tropic flow solutions. For flows with shock waves,
we must use the more fundamental form of the con-
servation laws:

}{ B -ds =0,
S(R)

Here S(R) is the boundary of a space-time region
R, and ds = do 7 with do and i, respectively, be-
ing the area and the outward unit normal vector
of a surface element on S(R). Note that (i) because
izm .ds is the space-time flux of A,y leaving R through
ds, Eq. (2.8) simply states that the total space-time
flux of Ay, leaving R through its boundary vanishes;
(ii) all mathematical operations can be carried out
as though E were an ordinary two-dimensional Eu-
clidean space; and (iii) Eq. (2.7) is valid only for
smooth flows, and it can be derived from Eq. (2.8)
using Gauss’ divergence theorem. Since it places no
constraint on the shape of the CEs in the space-time
domain, Eq. (2.8) is more general than the usual
mathematical statement of a conservation law, as
typified by Eq. (2.2) or Eq. (2.3). Eq. (2.8) is the
space-time integral form that is numerically approxi-
mated in the CE/SE method. For the CEs as defined
in CE/SE schemes to date, Eq. (2.3) suffices. How-
ever, an alternate derivation of 1D CE/SE schemes
requires the use of Eq. (2.8). The form Eq. (2.8) is
also éssential for the oblique cylinder CEs that will

m=1,2,3. (2.8)

arise when the CE/SE method is applied to mov-
ing boundary or moving mesh problems. Also, the
space-time perspective inherent in Eq. (2.8) frees
up the researcher to visualize spatial meshes that
are not stacked directly one on top of another in the
time direction, but are instead spatially staggered
relative to previous time levels.

2.3 An Ideal Numerical Analogue

A smooth solution to the Euler equations, Eq. (2.4),
has the following important properties: (1) it does
not dissipate with time; (ii) its value at any point
(z,t) has a finite domain of dependence at an earlier
time; and (iii) it is completely determined by the
initial data at a given time. In the light of these
properties, we remark that (i) a solution to a dis-
sipative numerical scheme will dissipate with time;
(ii) the value of a solution to an implicit scheme at
any point (z,t) depends on all the initial data and
all the boundary data up to the time ¢; and (iii) a
scheme involving more than two time levels requires
the specification of the initial data at more than one
time level. Therefore, we conclude that an ideal nu-
merical analogue to Eq. (2.4) should be neutrally
stable, ezplicit, and involving only two time levels.

By adding an artificial dissipation term to intro-
duce irreversibility, an ideal solver of Eq. (2.4) can
be extended to model flows with shocks. We want
to emphasize that the artificial dissipation in an
ideal numerical method should occur only in shock
capturing; without added artificial damping, there
should be no other source of numerical dissipation.

Furthermore, in an ideal Navier Stokes solver, the
above guidelines of modeling the Euler equations
should be applied to the discretization of the con-
vective terms of the Navier Stokes equations. We
note that, stripped of any added artificial terms, tra-
ditional numerical schemes are in general not free
from inherent numerical dissipation. For flows at
large Reynolds numbers, numerical dissipation may
overwhelm the physical dissipation and cause a com-
plete distortion of the solution. Because an ideal
analogue of Eq. (2.4) has no numerical dissipation,
when it is applied to discretize the convective terms
of the Navier Stokes equations, the Navier-Stokes
solver has the property that the numerical dissipa-
tion of its solutions approaches zero as the physical
dissipation approaches zero.



3 The CE/SE Method in One
Spatial Dimension

By comparison with modern upwind finite-volume
methods for hyperbolic equations, the following dis-
tinguishing features of the CE/SE method result in
a simpler and more consistent numerical flow model:
(i) A space-time discretization is chosen for the flux
conservation such that there is no Riemann problem
to be solved at the cell interface. (ii) To avoid impos-
ing predetermined constraints on the flow solutions
such as monotonicity and TVD, the flow properties
and their gradients are treated as unknowns. For
smooth flows, the unknowns are completely deter-
mined by flux conservation, and the resultant nu-
merical procedure can march forward and backward
in time. (iii) For flows with shocks, an adjustable
artificial damping is added to the discretized equa-
tions such that the numerical entropy condition is
satisfied.

3.1 Preliminaries

For simplicity, we develop the CE/SE Euler solver
on a uniform staggered space-time mesh. In Fig. 3.1,
we illustrate the nodes, denoted by dots (filled cir-
cles), where the unknowns are located. The space
and time intervals between neighboring nodal lines
are respectively denoted by Az/2 and At/2. Note
that the spatial interval between nodes at a given
time level is denoted by Az. The reason for the no-
tation At¢/2 for the interval between successive time
levels is to emphasize that on this staggered space-
time mesh, it takes two half-time-steps to return to
the original spatial node locations. There is a Solu-
tion Element (SE) associated with each node @, n).
Let the SE(j, n) be the interior of the space-time re-
gion bounded by a dashed line depicted in Fig. 3.2.
It includes a horizontal line segment, a vertical line
segment, and their immediate neighborhood. Be-
tween SEs, discontinuities are allowed. For the Eu-
ler equations, Eq. (2.4), which have no source terms,
the actual size of the neighborhood does not matter.

Within a SE, the flow property vector U and
the flux vector F are approximated by their dis-
cretized counterparts U* and F*. Since a second-
order scheme is desired, piecewise linear functions of
space and time U* and F* are assumed. For (z,1)
in SE(j, n), we assume that

U*(z,t;4,n) =

Ui +(U2)j (- 2) + (U] (t—t")  (3.1)
and

F*(l‘,t;j, n) =

(F); +(Fo)] (2 —2;) + (F)T (1 - t").  (3.2)

This is the Taylor polynomial of degree one within
each element, and the expansion coefficients Uz,
etc., are the column matrices of unknown constants
to be determined for each SE(j, n). F? is the column
matrix F (which is a function of U) evaluated with
U= U7.

The expansion coefficients (U)7, (Fz); and (Fo)}
in Eqgs. (3.1) and (3.2) will be expressed as functions
of the independent unknowns U7 and (U,,.);1 of the
present scheme as follows:

(E.)} = A7 (UL, (33)

(Ut); =—(F; ; ) (3.4)
and

(Ft);‘ = A?(Ut)?. (3.5)

Here (i) A} is the Jacobian matrix A = 9F/0U
(which is a function of U) evaluated with U = U7,
and (ii) Egs. (3.3), (3.5) and (3.4) are the numerical
analogues of the chain-rule relations F. = AU, ,
F: = AU, and the differential equation, Eq. (2.4),
respectively. Furthermore, because the space-time
flux vectors h,, = (fmyum), m = 1,2,3, we shall
assume that form = 1,2, 3,

hoo(,853,m) = (£ (2,84, 0), win(z, 15 5,1)), (3.6)

where u;,, and f,, m = 1,2,3, are the components
of the column matrices U* and F*, respectively.

At this juncture, note that hereafter, the compo-
nents of the column matrices U7, (U:)}, (Us)}, F?,
(Fz); and (F,)7, will be denoted by (um);, (tmz);,

(ume)}, (fm)}s (fme)} and ()7, m = 1,2,3, re-
spectively.

3.2 Discretization of
Conservation Laws

Space-Time

For smooth flows, the calculations of U? and (U.)?
are determined by requiring fluxes to be conserved
over space-time Conservation Elements (CEs). As
depicted in Figs. 3.3(a) and 3.3(b), two CEs, de-
noted by CE_(j,n) and CE,(j,n), are associated
with every mesh point (j, n). A glance over Figs. 3.1,



3.2, and 3.3 reveals that the set of CE4 (4, n) over all
mesh points (j,n) do not overlap among themselves
and can fill the entire space-time computational do-
main.

For each (j,n), the following discrete analogues
to the space-time flux conservation, Eq. (2.8), are
imposed:

f by -ds=0, m=1,23, (3.7)
S(CE-(j.,n))
and
f{ by ds=0, m=1,2,3. (3.8)
S(CE4(jn))

According to Figs. 3.2, 3.3a, and 3.3b, we have

the following observations: (i) The edges CB and -

CD of CE_(j,n) lie in SE(j — 1/2,n — 1/2); (ii)
The edges AB and AD of CE_ (4, n) lie in SE(j, n);
(iii) The edges ED and EF of CE4+(j,n) lie in
SE(j +1/2,n— 1/2); (iv) The edges AD and AF of
CE4(j,n) lie in SE(j,n). As a result, with the aid
of the numerical counterpart of Eq. (2.8), and Egs.
(3-1)-(3.6), we conclude that Eq. (3.7) leads to three
relations (one for each m) involving the independent

unknowns U}, (Uz)7, U;__ll//;, (U, ;:11//;, and Eq.

(3.8) leads to another three relations, involving U?,

(Uz)2, U;_:lll/.f , and (U,);‘_;'ll//zz . Assuming that the
unknowns at the mesh points (j — 1/2,n ~ 1/2) and
(j+1/2,n—1/2) are given, the six components of u?
and (U;)? can be determined by the above six rela-
tions. It will be shown next how U7 and (U,)} can
be determined from these relations without needing

to solve any nonlinear algebraic equations.

Note that the space-time flux of A* leaving
CE_(j,n) through AD and that leaving CE+(j,n)
through AD are evaluated using the same unknowns,
ie,, U? and (U,,);‘. Thus, these two space-time
fluxes are each the negative of the other. As a result,
a combination of Eq. (3.7) and Eq. (3.8) imply that

-
*

}{s(CE(j,n)) ™

where CE(j,n) (see Fig. 3.3(c)) is the union of
CE_(j,n) and CE4(j,n). Thus, the CE(j, n) are
also conservation elements for the scheme. Here, as
explained above, the fluxes of A, leaving CE(j, n)
through CD, CB, ED, and EF can be evaluated in

terms of U;i_ll //22 and (U,_.);Ill //22 . Further, it can be

shown that the flux of A, leaving CE(j, n) through
BF is simply (up)?Az. (This would not be true

-ds=0, m=1,2,3,

(3.9)

on a nonuniform spatial mesh, but a small modifica-
tion of the method, not described here, allows one to
similarly avoid solving any nonlinear algebraic equa-
tions.) Thus, Eq. (3.9), which is a combination of
Egs. (3.7) and (3.8), implies that U7 can be deter-

mined explicitly in terms of U;’;ll//; and (U,,);’:;l1 //22 .

After obtaining U7, F} and A7 can be determined
because they are functions of U7 only. As a re-
sult, by applying either Eq. (3.7) or Eq. (3.8) (only
one of these two equations is independent after Eq.
(3.9) is used), one can obtain a system of three linear
equations with the three unknowns being the three
components of (U,);-'. In other words, (U,,);-‘ can be

determined in terms of U7, U;’;ll //22 , and (U,,);':‘:l1 //22

by solving either Eq. (3.7) or Eq. (3.8).

3.3 Special Features of the CE/SE
Method for Isentropic Flows

It has been shown by numerical experiments that
the present scheme is neutrally stable in the inte-
rior of the computational domain up to at least a
thousand time steps when the Courant number does
not exceed unity. As a matter of fact, by using an
analysis similar to that given at the end of Sec. 6
in [6], one can show that the linearized form of the
present numerical analogue is neutrally stable when
the Courant number does not exceed unity. Thus,
the scheme described above is non-dissipative when
the Courant number does not exceed unity. This has
been shown in [2] to result from the fact that the nu-
merical scheme shares with the Euler equations the
property of being invariant under space-time inver-
sion. The present scheme also meets the require-
ments of an ideal numerical analogue set forth in
Sec. 2.3, i.e., it should be neutrally stable, explicit,
and involving only two time levels.

From the previous development, it can be deduced
that the numerical scheme observes a global conser-
vation condition that is a direct result of Eq. (3.9),
Le., for any space-time region that is the union of
any combination of the CEs of the type depicted in
Fig. 3.3(c), the total flux of k%, m = 1,2, 3, leaving
its boundary vanishes. Thus, the CE/SE scheme en-
forces global conservation of the numerical fluxes in
both time and space.

The fluxes are uniquely defined at the boundaries
of each CE. Each segment of the boundary of a CE
lies in one and only one SE. This is made possible by
the spatial staggering of the mesh points at one half-



time-level relative to those at the previous half-time-
level. The conception of this staggered arrangement
was in turn facilitated by the unified space-time
viewpoint employed in the CE/SE method. This
feature of unique definition of the interfacial fluxes
allows us to avoid the need for upwind or other aver-
aging of the fluxes at the interfaces. Thus the need
for an exact or approximate Riemann solver does
not arise. The flow of information between SEs is
contained within the conservation law itself.

The CE/SE scheme does not require a flow gra-
dient reconstruction strategy, for the simple reason
that the flow gradients are themselves treated as
unknowns, and are determined, together with the
flow solution itself, from the discretized conservation
equations, Eqs. (3.8) and (3.9). No unnecessary as-
sumption of smoothness of the solution between SEs
is made in the Euler isentropic-flow scheme, when
calculating either the flow variables or the flow gra-
dients. While conventional finite-volume techniques
also allow for the flow variables to be discontinuous,
by using conservation to link cells, they do assume
continuity of the flow when reconstructing the gradi-
ent and when using upwind biasing to calculate the
interfacial fluxes. Contrarily, in the CE/SE scheme,
no such assumptions are required, and consequently
no complex flux-limiter strategy is needed. In some
finite-element schemes, even more constraining as-
sumptions of solution smoothness are made; the so-
lution itself is taken to be continuous between cells
by choosing to place single-valued solution nodes on
the interfaces of cells.

3.4 The Shock-Capturing Scheme

The above marching scheme for isentropic flows can
be expressed as

U7 =

H (U773 U2 (Ui f2, (0.372) , (a.10
and

(U, );l =

He (U723, Urn s (O 2, (0 s2) (s

Here H and H, are column-matrix functions. Their
explicit forms can be obtained from Egs. (5.20)-
(5.29) in [6] with the assumption that the viscosity
# = 0. In the construction of the shock-capturing
scheme, the local conservation condition, Eq. (3.9),
is again assumed. Because Eq. (3.10) follows directly

from Eq. (3.9), the former is incorporated into the
shock-capturing scheme without modification. As
a result, given the same U;';ll //22 and (Uz);;11/22 ,
the shock-capturing scheme “shares with the non-
dissipative scheme the same zero-order terms on the
right sides of Egs. (3.1) and (3.2). In addition, the
shock-capturing scheme also observes a global con-
servation condition that is also a direct result of Eq.
(3.9).

The shock-capturing scheme is obtained by mod-
ifying Eq. (3.11). To proceed, let

_ ym-1/2 , At -1/2
(U)jars2 = Uiz + 5 (U5

i (3.12)

ie., (U’ )?il /2 is a first-order Taylor’s approximation
of U at the point (j + 1/2,n). Thus,

n_ U — (U2,
(U;)] = 4 Az

(3.13)

is a central-difference approximation of U, at the
mesh point (j,n). In the shock-capturing scheme,
Eq. (3.11) is replaced by

(U)f=(1- 2¢)(H;)7 + 2¢(US 7 (3.14)
where (H.)? denotes the expression on the right
side of Eq. (3.11), and ¢ is a real number. Note
that (UZ)? is defined in terms of a central-difference
approximation. Generally, numerical dissipation is
introduced as a result of using such an approxi-
mation. On the other hand, (H;)} represents the
solution from a non-dissipative scheme. The right
side of Eq. (3.14) is a weighted averaged of (Hj)?
and (UZ)? with the weight factor of 1 — 2¢ and 2,
respectively. Therefore, one may heuristically con-
clude that the numerical dissipation associated with
the shock-capturing scheme can be increased by in-
creasing the value of €. This conclusion is verified by
numerical experiments. As shown in [6], the stabil-
ity domain of the shock-capturing scheme is defined
by

CFL<1 and 0<e<]1, (3.15)

where CF L is the maximum Courant number. Note
that Eq. (3.14) can also be expressed as

(Uz)} = (H)? + 2¢(DU)?, (3.16)
or
(U2)} = (U5) + (26 — 1)(DU)7, (3.17)
where
(DU); = (U3)] - (H,)}. (3.18)



According to Eq. (3.16), (Uz)} for the shock-
capturing scheme is the sum of the non-dissipative
term (H;)? and the dissipative term 2¢(DU)?. The
latter provides the necessary entropy-increasing con-
dition within the stability domain defined by Eq.
(3.15). Also it is seen from Eqgs. (3.16) and (3.17)
that (U;)? reduces to (H )7 and (U$)? in the cases
of € = 0 and € = 0.5, respectively.

The shock-capturing scheme described above gen-
erally can capture shocks with high resolution and
without generating substantial numerical oscilla-
tions near shock if 0.3 < € < 0.8. To further damp
out these oscillations, (Ug)?in Eq. (3.17) (which is
equivalent to Eq. (3.14)) can be modified using a
simple slope-limiting procedure [6]. Let
(U= U
T Az/2
Because (U')7,, /2 and U7 are the numerical ana-
logues of U at the mesh points (j+1/2,n) and (j, n),
respectively, (Us4)} and (U,_)7} are two numerical
analogues of U, at the mesh point (j,n), with one

being evaluated from the right and another from the
left. It follows from Egs. (3.13) and (3.19) that

(U2)} = 5 [(Ua )} + (U2,

Le., (UZ)} is the simple average of (Uz4)} and
(Uz-)7. A nonlinear weighting function is defined
as

(Uss)] =+ (3.19)

(3.20)

lz4 %2 + |z |2y

241+ |o- |
where z_, z4, and o are real variables with
|2+l + |z—] > 0 and @ > 0. Note that (1)
W(z_,z4;0)is the simple average of z_and z4,and
(i) W(z-,24;1) and W(z_,z4;2) are used in the
slope-limiters proposed by van Leer [40] and van Al-
bada et al. [50], respectively.

W(z_,z4;a)= (3.21)

Recall that (ums+)} denotes the m-th component
of (Upa)?. Let

(u#z)? =W [(uma:— )?: (umz+)?’ a] (3.22)
Then, as shown in [6], numerical oscillations near
shocks can be suppressed very efficiently if (Ug);‘ in
Eq. (3.17) is replaced by (U2)}, ie., the column
matrix formed by (umz)j], m=1,2,3,ifa > 1.

3.5 Concluding Remarks

We conclude this section on the CE/SE method in
1D by mentioning that 1D CE/SE explicit solvers

have been developed for the scalar advection equa-
tion (with and without controllable added numerical
dissipation), and for the scalar advection-diffusion
equation. Corresponding schemes have been formu-
lated for the Euler and Navier-Stokes equations. The
Euler schemes were described in this section. Im-
plicit schemes have also been formulated for the 1D
advection-diffusion equation. The various schemes
for the scalar equations have been thoroughly anal-
ysed for their accuracy and stability properties, see
(6] and [8]. Surprisingly, various limiting cases of the
1D scalar schemes turn out to have amplification
factors matching those of several classical numeri-
cal schemes, viz., the Leapfrog, Lax, DuFort-Frankel
and Crank-Nicolson schemes. ’

The numerical boundary conditions have not been
discussed in this paper. The boundary conditions
used to date have been both simple and effective.
The flux-based nature of the method allows, in par-
ticular, the use of extremely simple yet robust non-
reflecting boundary conditions [12]. The efficacy of
these non-reflecting boundary conditions is demon-
strated in some of the numerical examples in this
paper. Further research is under way on boundary
conditions for the CE/SE schemes.

4 The 2D Euler Solvers

In Sec. 3, it was established that in the 1D case
there were only two sets of independent marching
variables, i.e., (i) (um);, m = 1,2, 3, and (ii) (¢mz)},
m = 1, 2, 3, at each mesh point (j, n), if Egs. (3.15—
(3.6) are assumed. As aresult, it requires two sets of
conservation conditions, i.e., Eqgs. (3.7) and (3.8) to
construct the 1D non-dissipative Euler scheme. As
a prerequisite to Eqs. (3.7) and (3.8), two CEs, i.e.,
CE-(j,n) and CE4 (j,n) are defined for each mesh
point (j, n).

The 2D CE/SE non-dissipative Euler solver [5, 7]
was constructed using the same set of design princi-
ples that was used to construct its 1D counterpart.
The differences between them stem entirely from the
fact that there is one more spatial dimension to be
considered in the 2D solver. In this section, only the
basic geometric structures of the 2D solver will be
described. For other details, the reader is referred
to [5].

The 2D unsteady Euler equations of a perfect gas
[5, 7] consist of four independent equations, m = 1,



2, 3, 4, instead of the three equations applicable to
1D flow. Also, in the 2D case, there are two spatial
components of the gradient of each u,, (i-e., Ums
and umy, where z and y are Cartesian coordinates
for the 2D space). This is in contrast to the 1D
case, in which, for each up,, there is only one spatial
component of the gradient of u,, (i.e., Umg)-

In the development of the 2D non-dissipative Eu-
ler solver and its extensions [5], a set of equations
that is a natural 2D extension of Egs. (3.1)~(3.6) is
assumed. As aresult, there are three sets of indepen-
dent marching variables at each mesh point (4, k,n)
(see Figs. 4.1 and 4.2 for the locations of the mesh
points. The reader is referred to [5, 7] for the defini-
tions of the spatial mesh indices j and k of the uni-
form structured triangular mesh of Fig. 4.1). They
are (um);-‘,k, (u,m);-‘,,c and (u,,,y);.‘Jc ,m=1,2 3,4.
It follows that it requires three sets of conservation
conditions (each set comprises four conditions, cor-
responding to m = 1, 2, 3, 4) at each mesh point to
construct the 2D non-dissipative solver. Therefore,
as a prerequisite, one must define three conservation
elements for each mesh point. The construction of
these CEs, which is the most intriguing part of the
development of the 2D CE/SE Euler solver, will be
described in what immediately follows.

Consider a spatial domain formed by congruent
triangles (see Fig. 4.1). The center of each triangle
is marked by either an empty circle or a filled circle.
The distribution of these empty and filled circles is
such that if the center of a triangle is marked by a
filled (empty) circle, then the centers of the three
neighboring triangles with which the first triangle
shares a side are marked by empty (filled) circles.
As an example, point G, the center of the triangle
ABDF, is marked by a filled circle while points A, C
and E, the centers of the triangles ABF M ,ABJD
and ADLF, respectively, are marked by empty cir-
cles. These centers are the spatial projections of the
space-time mesh points used in the 2D solver [5, 7].

To specify the exact locations of the mesh points
in space-time, one must also specify their temporal
coordinates. In the 2D CE/SE development, again
we assume that the mesh points are located at the
time levels n = 0, £1/2, +1, +3/2, ..., with t =
n At at the nth time level. Furthermore, we assume
that the spatial projections of the mesh points at a
whole-integer (half-integer) time level are the points
marked by empty (filled) circles in Fig. 4.1.

Let the triangles depicted in Fig. 4.1 lie on the
time level n = 0. Then those points marked by
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empty circles are the mesh points at this time level.
On the other hand, those points marked by filled
circles are not the mesh points at the time level n =
0. They are only the spatial projections of the mesh
points at half-integer time levels. Thus the 2D space-
time mesh is, as in the 1D case, a staggered mesh.

Points A, C and E, which are depicted in Figs. 4.1
and 4.2, are three mesh points at the time level n =
0. Point G', which is depicted in Fig. 4.2, is a mesh
point at the time level n = 1/2. Its spatial projection
at the time level n = 0 is point G. Because point G
is not a mesh point, it is not marked by a filled circle
in the space-time plot given in Fig. 4.2. Hereafter,
only a mesh point, e.g., point G’, will be marked by
a filled or empty circle in a space-time plot.

The conservation elements associated with point
G’ are defined to be the space-time quadrilateral
cylinders GFABG'F'A'B', GBCDG'B'C'D’, and
GDEFG'D'E'F' that are depicted in Fig. 4.2. Here
(i) points B, D and F are the vertices of the trian-
gle with point G being its center (centroid) (see also
Fig. 4.1), and (ii) points 4’, B’, C', D', E' and F'
are on the time level n = 1/2 with their spatial pro-
Jections on the time level n = 0 being points A, B,
C, D, E and F, respectively.

Recall that, in the development of the 1D non-
dissipative Euler solver, a pair of diagonally oppo-
site vertices of each CE4(j, n) (see Figs. 3.3(a) and
(b)) are assigned as mesh points. Furthermore, the
boundary of each CE4(j,n) is a subset of the union
of the SEs associated with the two diagonally oppo-
site mesh points of this CE. In the 2D development,
as seen from Figs. 4.2, two diagonally opposite ver-
tices of each CE are also assigned as mesh points.
In the following, we shall define the SEs such that
even in the 2D case, the boundary of a CE is again
a subset of the union of the SEs associated with the
two diagonally opposite mesh points of this CE.

As an example, the SE associated with
point G’ is depicted in Fig. 43. It is the
union of three vertical rectangles (i.e., G"B"BG,
G"D"DG and G"F"FQG), a horizontal hexagon (i.e.,
A'B'C'D'E'F’) and their immediate neighborhood.
Note that points G”, B”, D" and F” are on the time
level n = 1 and their spatial projections on the time
level n = 0 are points G, B, D and F, respectively.
The definition of the SE of any mesh point is similar
to the definition of the SE of the point G’. Note that
on the uniform structured mesh shown, the SEs and
CEs at the whole integer time levels can be seen to
be congruent to the SEs and CEs respectively at the



half integer time levels, by a rotation of 180 degrees
about the time axis followed by spatial and temporal
translations.

As depicted in Fig. 4.2, one of the CEs associated
with point G’ is the space-time quadrilateral cylin-
der GFABG'F'A’B’. Among the vertices of this
CE, only points A and G’ are mesh points. From
Figs. 4.3, it is seen that (i) three of the faces of this
CE, i.e., GBG'B', GG'F'F and G'F'A'B’ are sub-
sets of the SE of point G, and (ii) the other three
faces, i.e., AA'F'F, ABB'A’ and ABGF are sub-
sets of the SE of point_A. As a result, by assuming
that the flux of each A}, (m =1, 2, 3, 4) is con-
served over this CE, one can impose four conditions
involving only the independent marching variables
at the mesh points A and G'. Similarly, by using
the flux conservation conditions over the other two
CEs associated with point G’, one can obtain eight
other conditions that relate the independent march-
ing variables at the mesh points G/, C and E. Using
the above 12 conditions, the 12 independent march-
ing variables, i.e., Um, ume and Uny, m = 1,2, 3,
4, at the mesh point G’ can be determined in terms
of the independent marching variables at the mesh
points 4, C and E. By considering the mesh point
G’ as a typical mesh point, the reader can under-
stand how the 2D non-dissipative Euler solver was
constructed [5, 7).

"The non-dissipative Euler solver is only one of sev-
eral 2D solvers described in [5, 7). The latter docu-
ment includes the 2D extensions of all but one of the
1D solvers described in [6]. The only exception is the
2D extension of the 1D Navier-Stokes solver. This is
under development, and will be dealt with in a sep-
arate paper. Also, because of the similarity in their
design, each of the 2D extensions shares with its 1D
version virtually the same fundamental characteris-
tics. As an example, the 2D non-dissipative Euler
solver is neutrally stable, explicit, and involves only
two time levels during a single time step. It also pre-
serves the forward-backward marching nature and
the space-time inversion invariance property of the
2D unsteady Euler equations. These are the same
properties that characterize the 1D non-dissipative
Euler solver.

The discussion of the 2D Euler solvers is concluded
with the following remarks:

1. Because (i) the spatial geometric structure em-
bedded in the CE/SE 2D space-time mesh is
constructed from triangles, and (ii) triangles
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are the simplest polygon in the 2D space, the
CE/SE solvers described in [5] can easily be
modified and extended to solve flow problems
with complex geometries using unstructured tri-
angular spatial meshes[31].

. Several 2D CE/SE solvers using nonuniform
mesh have been developed [22-29]. Some of the
numerical results generated with these solvers
will be presented in Sec. 6.

The extension of the non-dissipative Euler
solver to become a shock-capturing scheme by
the addition of controllable numerical dissipa-
tion is a straightforward extension of the devel-
opment in Egs. (3.10) - (3.22).

. The non-reflecting boundary conditions men-
tioned in the previous section have also easily
been extended (e.g., [13, 30]) to the 2D case,
and have proven to be just as effective as in 1D

5 The Basis for a 3D Euler
Solver

We indicate the discretization of space-time which
forms the basis for a 3D Euler solver currently under
development. The extension of the CE/SE method
to three spatial dimensions follows reasoning similar
to that used when extending the 1D solver to the
2D case (see the previous section). In the 3D case,
the unsteady Euler equations of a perfect gas con-
sist of five independent equations, m =1, 2, 3, 4, 5.
There are three spatial components of the gradient
of each un, (i-e., umz, Umy and Um,,, where z, y and 2z
are Cartesian coordinates for the 3D space). When
piecewise linear variation with space and time are as-
sumed for the numerical solution, as is done in the
1D and 2D cases, and after the differential equation
is assumed valid at each mesh point, there remain
four sets of independent marching variables at each
mesh point. It follows that four sets of conserva-
tion conditions are required at each mesh point to -
construct the non-dissipative 3D solver. Hence, four
conservation elements must be defined for each mesh
point. Just as a triangle was the polygon sharing its
bounding edges with three neighbors, so a tetrahe-
dron is the polyhedron sharing its bounding surfaces
with four neighbors.

In the 2D case, referring to Figs. 4.1 and 4.2,
GFAB, GBCD and GDEF are the spatial projec-
tions of the CEs associated with G’. The CEs in



the 3D case can be constructed in analogous fash-
ion. Consider the tetrahedron ABC D with centroid
G, and the tetrahedron ABCP with centroid H ,
depicted in Fig. 5.1. They share the face ABC.
The polyhedron GABCH is then defined as the spa-
tial projection of a CE associated with a point G'.
The CE is thus a right cylinder in space-time, with
GABCH as its spatial base. The point G is the spa-
tial image of the mesh point G/, which is displaced
temporally from G by half a time step.

In similar fashion, three additional CEs associ-
ated with the mesh point G’ can be constructed
by considering in turn three tetrahedra that share
with ABCD one of its other three faces. Thus the
numerical solution at G’ can be determined from a
knowledge of the solution at the four mesh points
(one of which is H) which are the centroids of the
tetrahedra sharing a face with ABCD. This forms
the basis of a non-dissipative 3D Euler solver.

Just as the structured mesh of Fig. 4.1 is obtain-
able by sectioning the parallelograms of Fig. 4.1 into
triangles, so it is possible to construct a structured
mesh of tetrahedra by sectioning a mesh of paral-
lelepipeds. Details of the construction will be given
in a future paper. Again, the extension to a space-
time mesh built from an unstructured tetrahedral
spatial mesh is simple.

6 Computational Examples

6.1 Shock Tube with Non-Reflecting
Computational Boundaries

The CE/SE computational results are presented for
an extended Sod’s shock tube problem [51], in which
the shock tube problem is extended by imposing a
non-reflecting boundary condition at each end of the
computational domain. The challenge of the non-
reflective boundary condition is no less difficult than
that of capturing the shock and the contact disconti-
nuity. First, the flow under consideration is subsonic
throughout and the treatment of the non-reflecting
boundary condition for a subsonic flow is more dif-
ficult than that for a supersonic flow. Second, this
difficulty is exacerbated by the existence of a shock
and a contact discontinuity, which must be allowed
to exit the domain without reflection.

Flow of an ideal gas with specific-heat ratio y =
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1.4 is considered in an infinite shock-tube. The ini-
tial condition, at time t = 0, is (p,v,p) = (1,0,1)
if £ < 0, and (p,v,p) = (0.125,0,0.1) if z > 0.
Here, p,v,p denote the density, velocity, and pres-
sure of the fluid, respectively. A uniform space-time
mesh with Az = 0.01 and At = 0.004 (correspond-
ing to a maximum Courant number of about 0.88)
1s used over the computational domain defined by
—0.5< 2 <0.5and t > 0. The settings ¢ = 0.5 and
« =1 are used for the artificial dissipation parame-
ters. Note that the results are obtained without the
need of any local mesh-refinement techniques or any
time-step tuning.

The non-reflecting boundary conditions used are

() U7 = U,/ and (U.)] = (U)}2112 if (j,m)

is a mesh point on the right boundary, and (i)

-1/2 —1/2 ip ps
U7 = U2 and (U,)] = (Ua)i1its if (,m) is
a mesh point on the left boundary. The reasons
why such trivial extrapolations can serve so well
as non-reflecting boundary conditions in the CE/SE

method are explained in a separate paper [12].

Figs. 6.1-6.3 show the numerical solution (tri-
angular data points) compared with the analyti-
cal solution (unbroken line) at three different times,
namely, ¢ = 0.2, 0.4 and 0.6. It is seen that ex-
cellent agreement is obtained between the numerical
results and the analytical solution. In particular,
as seen in Fig. 6.1, the shock wave discontinuity is
resolved almost within one mesh interval and the
contact discontinuity is resolved in four mesh inter-
vals. Fig. 6.2 shows that by ¢ = 0.4, the numerically
computed shock wave has passed cleanly through the
right boundary, with no spurious reflections. Simi-
larly, Fig. 6.3 shows that by ¢ = 0.6, the contact
discontinuity has passed through the right bound-
ary, while the expansion region has partially passed
through the left boundary. Agreement with the ex-
act solution continues to be excellent.

6.2 Convection-Diffusion Examples

The CE/SE computations described in this sub-
section were originally presented in [8], where an
implicit CE/SE solver for the convection-diffusion
equation u; + au; — puzz = 0 (# > 0) was devel-
oped. The solver, termed the a-p(I1) solver, is an
extension of the a scheme, which is the CE/SE solver
for u; + au, = 0. The examples below help show
that the scheme is accurate over the whole Reynolds
number range, from pure diffusion to convection-



dominated solutions.

Pure Diffusion. We consider a special case of
the convection-diffusion equation with ¢ = 0 and
# =1, in the domain 0 < z < 1 and ¢ > 0. The
initial/boundary conditions completing the prob-
lem specification are (i) u(0,t) = u(1,t) = 0 for
t >0, (i) u(z,0) = 2z for 0 < z < 0.5, and (iii)
u(z,0) = 2(1 — z) for 0.5 < z < 1. The solution
u(z,t) exhibits the diffusive decay of the initial saw-
tooth shape. An exact series solution is available, see
for e.g. p.15 of [52]. For the CE/SE computation,
uniform mesh intervals Az = 0.02 and At = 0.005
are used. Fig. 6.4 shows the time-slice at ¢t = 0.05,
comparing numerical and exact solutions, and also
showing the error scaled with the peak exact value
at that time level. The maximum error magnitude
is seen to be about 0.5% of the peak solution value.
At ¢ =1 (not shown), when the peak solution value
has dwindled to about 4 x 10~%, the maximum er-
ror magnitude is about 0.15% of the peak solution
value.

Boundary Layer, Re = 100. We next consider
the problem defined for the convection-diffusion
equation in the domain 0 < z < 1 and ¢ > 0 by the
conditions (i) u(0,t) = 0 for ¢ > 0, (ii) u(1,2) = 1
for ¢ > 0, and (iii) u(z,0) = z for 0 < z < 1. The
‘steady-state’ or time-asymptotic limit of the solu-
tion is u(z,00) = [exp(az/p) — 1] / [exp(a/p) — 1].
The case a = 1, p = 0.01 (i.e. Re = 100) is consid-
ered, which leads to a steady-state boundary layer
at z = 1. Uniform mesh intervals Az = 0.0025 and
At = 0.002 are used, so that the Courant number is
0.8. Fig. 6.5 shows the computed and exact steady-
state limits, together with the error. The boundary
layer is seen to be well resolved, with the maximum
magnitude of the error being about 1% of the solu-
tion peak.

6.3 Unstable ZND Detonation Wave

1 The Piston Problems

We consider 1D and 2D ZND detonation wave
problems. The governing equations consist of the
Euler equations together with an equation for the
reactant concentration, with a stiff source term in
it. For details of the treatment of source terms in
the present CE/SE method, we refer the reader to
[18].

The initial condition of the present calculation is
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a long tube filled with reactant with a piston on one
end moving at a constant speed into the quiescent
reactant. Here, we use the piston face as the origin
of the coordinate system. In this coordinate frame,
reactant is charged into a closed-end tube at a con-
stant speed. A shock wave is reflected on the closed
end to ignite the reactant.

The parameters of the flow field in the present
calculation are set as chemical potential go = 50, ac-
tivation energy E* = 50, specific heat ratio y = 1.2,
and the over drive coefficient f = 1.6. According
to the classical theory for detonation instability. the
detonation wave becomes unstable and a longitudi-
nal wave bouncing between the piston and the shock
front should be observed. In this calculation, only 5
mesh nodes are used in the each half-reaction zone.
In Fig. 6.6(a), we show the temporal evolution of the
pressure level at the shock front. The first pressure
Jjump in the figure is caused by the start-up process
of the pushing piston. After the first pressure jump,
the flow field settles down and the instability waves
gradually built up. After 40 time units, a remark-
able instability wave occurs. In about 60 time unit,
there are about 8 pressure peaks. This numerical
solution is in excellent agreement with the results
reported by Fickett and Wood [53].

2 Numerical structure for two-dimensional
detonations

Unstable detonation waves obtained with the 2D
Euler equations plus a ZND equation are computed
by S.T. Yu and S.J. Park, in work yet to be pub-
lished. Fig. 6.6(b) is a Schlieren-type image of deto-
nation waves, especially plotted two periods for pres-
sure. A detonation is traveling from the top to the
bottom and the flowfield is composed of: (i) the qui-
escent state of the reactant before the shock, (ii) a
von Neumann spike with finite rate reaction, and
(iii) the equilibrium state after the reaction zone.
The two-dimensional cellular structure of detona-
tion waves is of concern: that is, the wave patterns
that arise when the flow parameters are chosen such
that the flow field is unstable. The parameters of
the flow field in the present calculation are set as
go = 50, ET =50, ¥ = 1.2, and the over drive coef-
ficient f = 1.6. According to the classical theory for
detonation instability, an unstable detonation wave
should be obtained with these parameters.

In this calculation, 20 mesh nodes are used in
the half reaction zone (260 mesh cells covered the
width of the channel). The calculation of two-
dimensional detonation wave is initiated by placing a



one-dimensional solution on a two-dimensional mesh
with periodic boundary conditions along the left and
right of the flow. Without artificial perturbation,
the shock front quickly becomes unstable under flow
conditions receptive for instability. Crisp cellular
structure is observed after transverse waves cause
the shock front to be curved. This figure shows that
regular mach stem cell structure exists between two
curved strong incident shocks and that peak pressure
zone is around triple points in the cellular structure
for unstable detonations.

The results compared favorably with the previ-
ously reported data. These results show that the
CE/SE method is a very accurate method for direct
calculations of propagating detonation waves. Fig-
ure 6.6(b) is obtained at t= 12.5sec.

6.4 Diffraction of a Shock Wave
around a Wedge

According to the experimental shadowgraph results
shown in [54], when a plane shock wave of M, = 1.3
is moving over the beginning of a finite wedge of
semi-vertex angle § = 26.565°, an ordinary Mach
reflection is generated. As the shock wave passes
the base, the flow separates to form vortex sheets at
the sharp corners. Further interaction produces an
increasingly elaborate pattern of shock waves, slip
lines and vortices.

As reported in [22, 26], this flowfield is simulated
using the CE/SE Euler solver. By virtue of the
symmetry in the solution, attention is restricted to
the upper half of the domain. The extent of the
computational domain is set based on an estima-
tion from Fig. 522 in [54]. The shock wave is at
z = —0.5 at ¢ = 0. The numerical boundary con-
dition imposed on the vertical wall of the wedge is
described in [25]. Numerical solutions at eight time
levels (t = 0.725, 0.9075, 1.2125, 1.55, 1.825, 2.1375,
2.4875; and 2.9475), obtained by using two subdo-
mains with 321x89 and 209x34 mesh points, and
with At = 0.0025, are shown in Fig. 6.7. It should
be pointed out that the upper and lower walls of the
channel shown in the shadowgraphs of [54] are actu-
ally further apart than the top and bottom edges of
the shadowgraphs. Therefore some flow phenomena
that are seen in Fig. 6.7, in the region near the upper
wall, are lost in shadowgraphs, especially at the 4th
time level. Comparisons of the computed solutions
with experimental pictures of [54] have shown an ex-
cellent agreement in general flow features except for
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those phenomena induced by the effect of viscosity.
The shock waves, slip lines and vortices are captured
very well.

6.5 Implosion/Explosion of Polygo-
nal Shock Waves in a Box

The 2-D CE/SE Euler solver has been used in [27]
to solve a problem studied in [55], concerning the
implosion /explosion of a polygonal shock wave in a
square box. In addition to the early stage of the
implosion /explosion process, the later development
of the process, which was not studied in [65], is also
simulated in [27]. The computation further demon-
strates the robustness of the CE/SE Euler scheme
in handling discontinuous flows.

A uniformly distributed 241x241 grid is utilized
in the computational domain, which is a square de-
fined by -2< z<2and -2<y < 2. The initial
shock wave configuration is a polygon, the geomet-
ric center of which coincides with that of the square.
Inside the polygon is a low pressure region, with a
pressure ratio of 10 across the shock. The radius of
the circumscribed circle of the polygon is selected to
be 0.8v/3 for all shapes of the polygon. In the nu-
merical scheme, the two parameters € and a are set
to be 0.5 and 1 respectively, everywhere in the com-
putational domain for all cases, and the maximum
Courant number is always kept at a value of 0.9.

In one set of computations, the early flowfield is
studied for polygonal shock waves with initial shapes
of an equilateral triangle, a square, and a pentagon.
The density contour plots at different time levels are
shown in Fig. 6.8. Wave patterns similar to those
captured in Figs. 1-5 of [55] using a TVD method
on a 359x359 grid are clearly shown in the CE/SE
solutions, displaying detailed features such as Mach
stems and the newly-developed smaller polygons.

In another computation, the implosion/explosion
of a hexagonal shock wave is simulated until the re-
implosion of the shock wave is observed in the box.
More complex flow phenomena can be seen in the
density contour plots of Fig. 6.9, including the reflec-
tions of shock waves, shock-shock interaction, and
shock-contact surface interaction. It is interesting
to note that the shape of the contact surface cen-
tered at the origin of the box remains unchanged
even after the passage of shock waves.



6.6 Examples from Computational
Aeroacoustics

The CE/SE computational examples we describe in
the next two subsections were reported in [16] and
(15]. The investigations in [16] and [15] found the
CE/SE Euler scheme to be capable of handling the
complete spectrum of flows, from small-amplitude
linear acoustic waves, all the way to nonlinear or
even discontinuous waves (shocks). Through nu-
merical experiments in computational aeroacoustics,
the following salient properties of the CE/SE Eu-
ler scheme emerge: (i)The CE/SE scheme possesses
very low dispersion error and yields high resolution
results comparable to that of a high order compact
difference scheme, although nominally the CE/SE
scheme is only of 2nd order accuracy. (ii) In gen-
eral, the numerical non-reflecting boundary condi-
tion applicable to the CE/SE scheme is genuinely
multi-dimensional, and can be implemented in a sim-
ple and elegant way without resorting to the com-
plexities of characteristic forms or buffer zones. (iii)
The CE/SE scheme is both a CFD ( Computa-
tional Fluid Dynamics) and a CAA (Computational
Aeroacoustics) scheme, capable of handling contin-
uous and discontinuous flows. It thus represents a
unique numerical technique for flows where sound
waves and shocks and their interactions are impor-
tant.

It is well-known that in CAA, the non-reflecting
boundary condition plays a dominant role in the fi-
nal numerical results. In general, there are three
ways to impose the non-reflecting boundary condi-
tions, namely,

(i) to apply 1-D characteristic variables (Riemann
invariants) in the direction normal to the boundary,

(ii) to minimize spurious numerical reflections
from the boundaries by inserting a buffer zone with
increased numerical damping,

(iii) to apply an asymptotic analytical solution at
the boundaries.

In the new CE/SE scheme, none of the above
complex treatments of non-reflecting boundary con-
ditions is needed. Instead, one of several possible
simple non-reflecting boundary conditions is:

(ume)ie = (umy)jx =0, m=1,23,4,
while (tt,rl)}-",c is defined by zeroth order extrapola-
tion from the interior neighbors. In general, the
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consequent reflection amounts to about 1% of the
strength of the incident waves.

6.7 Multiple interaction of strong
vortex and shocks

In the first example, the multiple interaction of a
strong vortex and shocks is considered. It is demon-
strated as a typical example to show that the CE/SE
scheme is capable of handling not only the linear
waves but also the highly nonlinear waves as well. It
is well-known that interaction between a vortex and
ashock may generates acoustic waves. To our knowl-
edge, researches including both experimental and
numerical computation, are mostly concentrated in
a single interaction between a vortex and a normal
shock. In this problem, we intend to show the capa-
bility of the CE/SE method in handling complicated
wave interactions. Although there are no existing
experimental results for comparison, our numerical
result appears consistent with the physical phenom-
ena. A grid of 401 x 101 is employed in this problem
with Az = Ay = 1. The inflow boundary condition
is given as a supersonic flow of Mach 2.9:

Up = 2.9,

Vo =0, Po = 1/1.4, Po =1

boundary condition at the top is an inclined flow:
uy = 2.6193, v, = —0.50632, p; = 1.5282, p, = 1.7000

The outflow boundary condition is of the non-
reflecting variety and the bottom boundary is a solid
reflecting wall. Then, a steady oblique shock is
formed with 29° inclination and reflected at the bot-
tom wall. The flow with shocks is precalculated un-
til a steady state is reached. It is then used as the
background mean flow for further computation. At
t =0, a strong Lamb’s vortex is placed at z = 22,
y = 60. The following is a brief description for a
stationary Gaussian type of Lamb vortex. In polar
coordinates, the azimuthal and radial velocities Ug
are given as

—ar?

—re , u, = 0.

Uy

With the prescribed uy and u,., using the momentum
and energy equations:

d u2 ~
Eg = ’% (6.1)
Y Py}
Piyle_ 2
G-np T2 = ©2)



where Hj is a predescribed total enthalpy, By sub-
stituting (6.2) into (6.1), a differential equation for p
is obtained and can be easily solved by numerical in-
tegration. Consequently, p and the entire stationary
flow field is determined. The solution of this station-
ary vortex can then be superimposed to any uniform
mean flow with a given streamwise velocity ug. In
the problem we consider, uy and u, are converted
to:

ar?

2
ar v = —6ze ,

u=bye” %,
where § = 0.3 is a given amplitude factor, while p
and p, as shown above, are functions of r, with

r? = (2 - uot)? + 1?).

This stationary vortex is thus superimposed to the
background mean flow. The vortex is large and
strong, since the pressure in the vortex center dips
down to about 7% of its circumferential value. Due
to the presence of shocks, the CE/SE scheme is re-
quired to have enough numerical damping. For this
purpose, a weighted average index @ = 2 and nu-
merical dissipation factor € = 0.5 are chosen. The
boundary conditions are the same as for the ini-
tial oblique shocks computation. We choose ¢ =
%> At = 0.2 and run 900 time steps. Fig.6.10
demonstrates the interaction process at different
time t=2,20,38,56,74,92,110,128,146, and 180. The
vortex propagates downstream while remaining in-
tact before colliding with the oblique shock. With
further propagation, it begins to interact with the
first oblique shock ( Fig.6.10 (2-3) ). During the
interaction, both vortex and shock are deformed or
distorted. The straight oblique shock first changes to
S shape and then recovers to its original straightline
shape. At Stage 2, the collision disrupts the vortex.
The ruptured vortex can no longer remain intact and
begins to release its kinetic energy in the form of
strong (non-linear) acoustic waves (pressure ampli-
tude is as high as 17% of the field maximum). The
phenomenon is consistent with others’ experiments
and numerical computations for a normal shock -
vortex interaction. In Fig. 6.10 (3-4), the disrupted
eddy continues to emit acoustic waves. Some of the
waves pass through the reflected shock and are re-
flected from the solid wall. In Fig.6.10 (5), the weak-
ening vortex is flushed further down and collides
with the second oblique shock. It is then further
disrupted and releases more energy in the form of
acoustic waves. At Stages 6,7 and 8, more acous-
tic waves are emitted and the vortex reduces its size
( to about 1/4 of its original size) and kinetic en-
ergy as well. In Fig.6.10 (9-10), the vortex is flushed
out from the computational domain along with the
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acoustic waves it generates, and the oblique shocks
resume their original shapes.

6.8 Acoustic Pulse / Shock-Wave In-
teraction

In order to demonstrate the capability of the CE/SE
scheme to handle interactions of acoustic waves and
shock waves, we describe an example of a weak
acoustic pulse wave passing through a strong shock.
We use a mesh of 200 x 200 nodes. The domain
is centered at the origin (0,0), with an extent of
—100 < 2 <100 and —-100 < y < 100. A steady
oblique shock at a position along a diagonal of the
computational domain is precalculated to form part
of the initial condition for the computation. The
initial conditions of an isolated acoustic pulse are
superimposed on this precalculated shock to form
the initial condition of the given problem. The data
upstream and downstream of the shock are respec-
tively

g = 2.378056, vg =0,
po = 1 and pg=0.714285T;
and
uo = 2.1017481, vo = 0.4062729,
po = 1.5807555 and pg = 1.3713613.

A weak acoustic pulse propagating across a strong
shock is considered. An acoustic pulse, initially cen-
tered at (zo,y0) = (=75, 0), with initial data

u=v* =0, pr=p= ee-“[(""'°)2+(y_y°)2]
is superimposed on the mean flow, where the ini-
tial pulse amplitude ¢ = 0.001 and a = (In2)/9. 1t
is observed that the oblique shock strength is three
orders of magnitude larger than the initial ampli-
tude of the acoustic pulse. The pulse propagates in
all directions with the speed of sound, while being
carried downstream by the mean flow. During the
computation, the non-reflecting boundary condition
described above is enforced at all the four sides of
the computational domain.

For such an interaction between a weak ( linear)
wave and a discontinuous wave, the theoretical exact
solution is not available. However, the numerical re-
sults obtained with the CE/SE scheme demonstrate
physically plausible phenomena. Fig. 6.11 illustrates
the isobars at various time steps. At first, the acous-
tic pulse is blown downstream and propagates freely.



As the puise collides with the strong oblique shock,
the shock is practically unaffected, while the acous-

tic pulse ring is distorted in its passage through the

shock, due to different speeds of sound and flow ve-
locities on either side of the oblique shock.

In other examples described in [9], [15] and [16],
the interactions of a strong (i.e. nonlinear) acoustic
pulse, and of weak and strong vortical and entropy
pulses with a strong shock were computed. Cur-
rently, the CE/SE method is being applied to bench-
mark problems in CAA and to supersonic jet noise
computations, and has proved to be exceptionally
accurate.

6.9 Three-Dimensional Inviscid Flow
Examples

The CE/SE 3D Euler solver, which is an extension
of the 1D Euler solver in the same way as is the 2D
Euler solver, has recently been developed by X.Y.
Wang and S.C. Chang. See Section 5 for the con-
ceptual description of flux conservation using tetra-
hedrons in 3D. Details of the solver will be presented
in a paper under preparation [?]. Some preliminary
numerical results are presented in the following. In
these results, a structured mesh of tetrahedrons is
used, with a =1 and € = 0.5 in the entire domain.

(a) Oblique shock problem: To help with vali-
dation, the 3D Euler code is used to solve the 2D
oblique shock reflection problem previously solved
with the 2D Euler solver in [7]. The structured mesh
consists of 42x14x14x6 tetrahedral spatial cells in a
domain05x§4,03y§l,andOSZSI.
The steady-state solution obtained with a time step
At = 0.012 is shown in Fig. 6.12, in which the den-
sity distribution in the entire domain and density
contours at the plane y = 0 are plotted.

(b) Flow past a ramp: For further validation, the
3D Euler code is used to solve a 2D supersonic flow
of M, = 2.2 past a ramp with a compression angle
6 = 12°, which has previously been solved using the
2D Euler solver in [22]. 40x10x10x6 tetrahedral cells
are used in a domain —0.2 < z < 18,0 <y <
1, and 0 < z < 1, and a time step At = 0.005
is used. The steady-state density distribution and
density contours at the surface y = 0 are shown in
Fig. 6.13.

(c) Implosion/Explosion of a spherical shock wave
in a cubical box. 41x41x41x6 tetrahedral cells are
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utilized in the computational domain specified by
0<7r<20<y<2and0<z<2 The sym-
metry inherent in the problem is utilized, so that
the initial shock wave configuration is an eighth of a
sphere, whose geometric center is at z = y=2=0
and whose radius is 0.8v/3. The interior of the sphere
is a low pressure region with a pressure ratio of 10
across the shock. The density and pressure contour
plots at different time levels obtained using a time
step At = 0.005 are shown in Fig. 6.14. The shock
wave, contact surface, and expansion wave in Fig.
6.14 display physics similar to that seen in the 2-
D implosion/explosion problem. More detailed de-
scription of the flow physics will be provided in (7]

7 Summary and Conclusions

In the present article, we reviewed the method of
space-time conservation element and solution ele-
ment (the CE/SE method, for short) for the nu-
merical solution of conservation laws. We described
several CE/SE schemes for computing fluid flows,
and touched upon other CE/SE schemes and exten-
sions. Our descriptions emphasized the geometry of
the space-time discretization.

An ideal solver for smooth flows must be neutrally
stable, explicit and two-level, and must be such that
the discrete equations are invariant under space-time
inversion. The CE/SE non-dissipative Euler solvers
for isentropic flows meet all these requirements. In
the present article, we described the non-dissipative
1D and 2D Euler solvers in terms of the conserva-
tion of piecewise linear space-time fluxes over dis-
crete space-time volumes. Thus, given the space-
time discretization, the schemes have a simple spec-
ification in terms of flux conservation. When shock
waves are present in the solution, numerical dissi-
pation must be introduced into numerical schemes
in a controllable fashion, to model the irreversibil-
ity in the exact solution. We described the shock-
capturing 1D Euler solver, which is a modification
of the non-dissipative solver. The added numeri-
cal dissipation has a simple geometric description
and a straightforward generalization to the 2D case.
The Navier-Stokes solvers, not described here, re-
duce to the non-dissipative solvers when the physi-
cal viscosity vanishes, and hence the latter is never
overwhelmed by numerical dissipation.

The key strategies that enable the CE/SE schemes
to avoid the limitations of the upwind schemes are:



(i) The more general form of the conservation laws,
i.e., the integral form, is cast in a form in which
space and time are treated on an equal footing. This
gives flexibility in the shape of the space-time con-
servation elements, which is useful for defining CEs
when, for e.g., sources are present in the CE. (ii) A
staggered space-time mesh is employed. This results
in the simplest stencil. It also obviates the need for
interpolation of fluxes at the interface between CEs.
Thus, there is no need for an approximate Riemann
solver. Hence, characteristics-based upwind-biasing
methods, which are complicated and strictly valid
only for smooth solutions, are avoided. There is thus
also no compromise in the symmetry of treatment
of the spatial fluxes. This also has implications for
flows in multiple spatial dimensions. For the com-
putation of such flows, upwind techniques must use
directional splitting with its attendant difficulties.
The CE/SE method in multiple spatial dimensions,
on the other hand, does not involve any directional
splitting. (iii) The flow property gradient is treated
as an additional unknown in the CE/SE schemes.
Therefore, there is no need for reconstruction of the
flow gradient by polynomial curve fitting over neigh-
boring mesh points, and for the subsequent use of
complicated flux limiters. (iv) Space-time fluxes are
conserved at both the local and global level. The
condition of flux conservation, rather than any ex-
trapolation, links the solution at a mesh point with
its neighbors at the previous time level. This empha-
sis on the integral conservation law is critical for ac-
curate flow simulations, particularly if they involve
long marching times and/or regions of rapid change
(e.g., boundary layers and shocks).

We reproduced here several numerical results ob-
tained with various CE/SE flow solvers. The re-
sults included a demonstration of extremely simple
vet highly effective non-reflecting boundary condi-
tions for the extended Sod’s shock-tube problem.
The CE/SE solver for the scalar convection-diffusion
equation was shown to be accurate in all Reynolds
number regimes. The CE/SE solver for the 1D and
2D Euler equations with source terms simulating
detonation was also shown. We reproduced numer-
ical solutions obtained with the 2D CE/SE Euler
solver, including the process of diffraction of a shock
wave around a wedge and the implosion/explosion of
a polygonal shock wave in a box, as well as compu-
tational aeroacoustic phenomena involving the inter-
action of strong shocks and weak acoustics as well
as strong shocks and strong vortices. The results
reproduced here are only some of the difficult prob-
lems readily solved with CE/SE schemes; see [1-31]

18

for more examples.

We remark here that the CE/SE schemes devel-
oped thus far are characterized by simplicity, gen-
erality of applicability and second-order accuracy
in space and time. The simplest possible stencils
are employed. The 2D spatial mesh is constructed
from triangles, and the 3D spatial mesh will be con-
structed from tetrahedra. Triangles and tetrahedra
are the simplest polytopes in 2D and 3D, respec-
tively. The 1D and 2D Euler solvers bear a remark-
able resemblance to the solvers of the 1D and 2D
scalar convection-diffusion equations, respectively,
with the discrete equations in the former two be-
ing matrix versions of the scalar equations in the
latter two. All of the above schemes are character-
ized by virtually the same properties. Furthermore,
the viscous flow solvers are designed to reduce to the
respective non-dissipative solvers when the physical
viscosity vanishes. The CE/SE method thus rep-
resents a new unified framework for the numerical
solution of conservation laws.
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Figure 2.2 — A space-time conservation element with an
arbitrary space-time domain
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Figure 4.1 — A spatial domain formed from congruent triangles,
showing the spatal projections of the mesh points
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Figure 5.1— Spatial projection of part of a 3D space-time mesh,
showing the construction of a CE

N
w



|74

001 = 2y ‘Joke Lrepunog : swayog 1-p wonduy — g9 am31g
~— x

0L _80 90 +0 20 00

—v—r—rv—r—rrvvrrvvry00
0100+ w
mu. 1¢0 0 oo are :ro- £0-  sgo-
g 1 o ro-
ﬂ"_“ﬂ 000°0F poomemmssememmeeemeceeceoooes y LAY 3 qvo
=] H 5 - E LU
{  uonnos 39eX3 190 - so £
_ :". JOLID PI[EIS =---nnn . - Juo ¢
0L0°0F | n paindwod v 180 F Jeo
[}
v -0l
x

s90 cco o 110~ £c'o~ 50~

uorsnyyIq amy : wayds - ondu — p°g amdry

x ’ £
S Po.co._. wuo m.o v.o NJO 0 @.o Z
uonnjos Vexy ——
w 040°0-F .
m. $5°0 ££°0 1o 0= ££0- ¢S50
2 = vo-
m_ S00°0- F 110
S 3 4c0
= o
3 Jso .m.
0000+ : / o <
3 4s0
i
={s]o)e ] -S0 (1=0 *10°0=XV "9°0="143)

9°0=7 1e wajqoad s,pog PapuIxXa 3 JO uonnjos JS/g) YL €9 ‘Big

X

§50  tTo 110 110~ £Co- so0- x
. - L 1) 110 110~ £T0-~  §50-
. o T ro-
kLU
3 o § {
: H
1 1, § H
Lo H
3 Jeo
5]
3
x
50  coo 110 110~  ceo- S0~ X
> - ss0  £co 110 11'0-  £To-  gg0-
b 300 N 0=
3 it 3 . Joo
i I s 3 4zo
] g 3 Ire £
Jo0 2 g
g 3 qe0 2
3 o0 )
3 i 3 L)
z1 3 Jo1
1
x
§0 €50 110 110-  ££0-  §50- x
o- $S0  ££0 10 0= £ro-  s50-
1 vo 1’0o~
3 qro
.J Jco
4 3 qco
3 450 2 3 g0 m
= <3 -
- oo ™ <
L Jeo
- Je0
3 Je0
1 .
(t=p *10°0=XV ‘g9°0~143) "
(1=2 *10°'0=XV *89°0="L43)

°0=7 18 wajqod 5,p0g PapuBIX3 AP JO uonnjos 3/ 3yl 79 Sig T'0=y 38 wajqod s,pog papuaixs oy jo uonnjos 4§/3D YL 1°9 ‘Big



125 S ! ' S -
o [ ]
5 100 - | | -
n B 4
o r | ]
o o 4
S 751 ]
(T B -

y T
: \VAVAVAVAVAVAVAVAS
50 |- -
. . . . , , .
0 50 Time 10C

Fig. 6.6 (a) — Front Pressure of Unstable 1D ZND Detonation Wave

Fig. 6.6 (b) — Pressure Contours of Unstable 2D ZND Detonation Wave
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the CE/SE solution
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Fig. 6.11 Isobars for interaction of an acoustic pulse with a shock wave




Figure 6.13 Flow past a 3-D ramp.
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(a) t0.4

(c) t=0.85 " (d) t=1.15
(a) Density contours

(c) t=0.85 (d) t=1.15
(b) Pressure contours
Figure 6.14 Implosion/explosion of a spherical shock wave at different time levels.
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